مشخصات فایل مقاله دنباله ها| شناسه فایل 396105

مقاله دنباله ها , دنباله , ریاضی , ریاضیات , دانلود , دانلود مقاله , دانلود تحقیق , دانلود پایان نامه , جبر , احتمال , هندسه , هندسه و مختصات , اعداد
با ما همراه باشید با موضوع مقاله دنباله ها

ادامه

دنباله ها

تعداد صفحات:8
فرمت فایل:doc

مقدمه

رياضيات زاييده اي احتياجات است. آنچه در قديمي ترين سند رياضي وجود دارد، با همه سادگي سير تكامل رياضيات در طي قرن ها بوده است. يونانيان پيشرفت علم را تند كردند و عصري به وجود آوردند كه شايسته عنوان «عصر طلايي» شد.

در اين جا ابتدا پنج اصل از اصول پئانو در رابطه با اعداد طبيعي را بيان مي كنيم و پس از آن به اختصار برخي دنباله ها را مورد بررسي قرار مي دهيم.

عددهاي طبيعي

عددهاي 0و 1و 2و 3 و... نوع اصلي اعداد را تشكيل مي دهند و اعداد طبيعي ناميده مي شوند. البته برخي صفر را جزء اين اعداد نمي دانند. تصوري كه بي درنگ از اعداد طبيعي در مغز ما پيدا مي‌شود. دستگاهي است كه به هر عدد آن از اين راه مي توان دست يافت كه از صفر شروع كنيم و هر چند بار لازم باشد 1 بيفزاييم. پئانو، دانشمند ايتاليايي، اولين كسي بود كه قوانين اصلي اعداد طبيعي را به صورت اصل موضوعي سازمان بخشيد.

مجموعه‌ي پنج اصل موضوعي او شايان توجه است. اصول پئانو را چنين مي توان بيان كرد :

  • صفر عددي است طبيعي
  • تالي (عدد بلافاصله بعد از) هر عدد طبيعي، عددي است طبيعي
  • هيچ دو عدد طبيعي متمايز يك تالي ندارند
  • صفر تالي هيچ عدد طبيعي نيست
  • اگر خاصه يي درباره‌ي صفر صادق باشد و اگر در صورت صادق بودن درباره‌ي يك عدد طبيعي در رابطه با تالي آن هم صدق كند، درباره‌ي همه‌ي اعداد طبيعي صادق خواهد بود.

از اصل ها مي توان نتيجه گرفت كه شماره‌ي اعداد طبيعي پاياني ندارد و اين رشته نه متوقف مي‌گردد و نه دور مي زند زيرا كه صفر تالي هيچ عددي نيست.

دنباله

كلمه‌ي دنباله در زبان روزمره براي بيان توالي اشياع و يا وقايعي به كار مي رود كه با ترتيبي آرايش يافته باشند. در رياضيات اين لغت معني فني خاصي دارد. لغت دنباله را به عنوان اصطلاحي مي گيرند كه يك مجموعه از اشيايي را مشخص مي كند، كه با ترتيبي آراسته شده اند كه هر عدد و يا جمله از آن با يك قانون يكسان به دنبال جمله‌ي قبلي مي آيد.


جزییات بیشتر